SHORT COMMUNICATIONS

FREE RADICAL CHAIN REACTIONS OF ATE COMPLEXES. ELECTRON TRANSFER PROCESSES 42

GLEN A. RUSSELL*, SHUISHENG HU, S. HERRON, WOONPHIL BAIK, P. NGOVIWATCHAI, W. JIANG, M. NEBGEN AND Y.-W. WU

Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

ABSTRACT

Iodide ion promotes the free radical reaction of isopropylmercury iodide with bromotrichloromethane to yield isopropyl bromide with rate enhancement in the order of 10^4 . The reaction involves electron transfer from i-PrHgI $_2^-$ to the trichloromethyl radical in a long kinetic chain process. Iodide ion also promotes the free radical chain conjugate addition of *tert*-butylmercury chloride to α,β -unsaturated ketones, esters, phosphonate esters and sulfones. Competitive reactivity studies indicate that lithium di-*tert*-butylcuprates or tri-*tert*-butylzincates react with 2-cycloalkenones by a mechanism involving attack by *tert*-butyl radicals. No evidence for radical attack is observed for the corresponding n-butyl ate complexes of copper or zinc.

Photostimulated chain processes have been described for the reactions of alkylmercury chlorides with substituted alkenes or alkynes containing electron-withdrawing or accepting groups, Processes (1) (EWG = $(EtO)_2PO$, PhSO₂, p-C₆H₄NO₂)¹ and (2) (EWG = PhSO₂, PhSO, P

$$CH_2 = CH(EWG) + t - BuHgCl \xrightarrow{h^v} t - BuCH_2CH(HgCl)(EWG) \xrightarrow{H^+ \text{ or } \atop NaBH_1} t - BuCH_2CH_2(EWG)$$
 (1)

$$PhCH = CH(EWG) + t-BuHgCl \xrightarrow{hv} t-BuCH = CHPh + (EWG)HgCl$$
 (2)

the attack of an electron-accepting radical (either the adduct radical t-BuCH₂CH(EWG)• in Process (1) or the eliminated EWG radical in Process (2) upon t-BuHgCl to generate t-Bu• in a step which often determines the efficiency of the overall process. As shown in Table 1, iodide ion in Me₂SO increases the yields and rates of these processes. Telomerization, which is a serious problem with CH₂=CHCO₂Et or CH=CHP(O)(OEt)₂ in Process (1), is not observed in the presence of 2 equiv. of NaI if a slight excess of the mercurial is employed, particularly when a proton donor such as NH₄⁺ or MeOH is present. This suggests that the effect of iodide ion may involve electron transfer from I⁻ or t-BuHgI₂⁻ to the electron-accepting adduct or eliminated radicals as shown in Reactions (3) and (4) (A• = electron accepting radical). Formation of

$$A \cdot + I^{-} \longrightarrow A^{-} + I \cdot \stackrel{t \cdot Bu \vdash gl}{\longrightarrow} HgI_{2} + t \cdot Bu \cdot$$
 (3)

$$A \cdot + t - BuHgI_2^- \longrightarrow A^- + HgI_2 + t - Bu \cdot$$
 (4)

0894–3230/88/050299–05\$05.00 © 1988 by John Wiley & Sons, Ltd.

Received 21 January 1988 Revised 14 June 1988

Table 1. Photostimulated reactions of tert-butylmercury chloride

substrate	% yield	% yield (equiv. t-BuHgCl; hv; time)a	
	product	t-BuHgCl ^b	t-BuHgCl + 2NaI ^c
CH ₂ =CHSO ₂ Ph	t-BuCH2CH2SO2Ph	39(1;R;4h)	85(1;R;4h) ^d
$CH_2 = CHP(O)(OEt)_2$	t-BuCH ₂ CH ₂ P(O)(OEt) ₂	30(1;S;2h)	$86(1;S;2h)^d$
CH ₂ =CHCO ₂ Et	t-BuCH ₂ CH ₂ CO ₂ R	$5(2;R;10h)^{c}$	$80(1;R;6h)^{d,f}$
CH ₂ =CHCOMe	t-BuCH ₂ CH ₂ COMe	7(2;R;10h)	85(2;R;6h) ^d
2-cyclohexenone	3-t-Bu-cyclohexanone	35(2;R;10h)	$85(2;R;2h)^{d}$
2,3-dichloro-MAg	2,3-di-t-Bu-MA	27(5;S;8h)	98(4;S;5h)
(E) -PhCH=CHSO ₂ Ph $\left\{$	(E)-t-BuCH=CHPh	45(5;S;24h)	73(5;S;24h)
	PhCH(Bu-t)CH ₂ SO ₂ Ph	16(5;S;24h)	27(5;S;24h)
PhC≡CSO ₂ Ph	t-BuC≌CPh	49(5;S;17h) ^h	85(5;S;2h) ^h
(E)-PhCOCH=CHCl	(E)-t-BuCH=CHCOPh		100(5;S;1h)
(E)-PhCOCH=CHCl	i-PrCH==CHCOPh	<10(5;S;12h)	$62(5;S;2h)^{i}$
CH ₂ =CHCH ₂ Cl	t-BuCH ₂ CH==CH ₂	95(5;S;4h)	100(5;S;3h)
HC≡CCH ₂ Cl	t-BuCH=C=CH ₂	20(5;S;7h)	71(5;S;5h)

^aReaction mixtures containing the substrate (0·2–0·4 mmol) in 10 ml of deoxygenated solvent were irradiated at 35–40 °C; S, 275 W sunlamp ca. 20 cm from reacton vessel; R, Rayonet 350 nm photoreactor.

t-BuHgI $_2^-$ in d_6 -Me $_2$ SO can be measured from the increase in the value of the 199 Hg $^{-13}$ C NMR coupling constant upon addition of I $^-$ to t-BuHgI, but the value of the complexation constant is only $\sim 1 \text{ M}^{-1}$ at $25 \,^{\circ}$ C.

The reactions of Table 1 will occur slowly in the dark in the presence of iodide salts by processes which are completely inhibited by $(t\text{-Bu})_2\text{NO}\bullet$. With CH_2 =CHP(O)(OEt)₂, the initial kinetic chain length measured in the dark by the inhibition method was >500. The thermal production of $t\text{-Bu}\bullet$ from t-BuHgX at 60 °C in Me₂SO as measured by ESR spin trapping with tert-butylphenylnitrone is a first order process with k increasing from 3.5×10^{-9} for X = Cl to 1.4×10^{-7} with X = I and 2.0×10^{-5} s⁻¹ with X = t-Bu. In the presence of 2 equiv. of I⁻, the thermolysis of 0.1 M t-BuHgX at 60 °C is accelerated by 200-fold for X = Cl and 10-fold for X = I with the formation of $t\text{-Bu}\bullet$ occurring primarily by a process first order in both t-BuHgI and I⁻. The photochemical decomposition of t-BuHgI is typically 5 to 10-times greater than t-BuHgCI (measured by the consumption of $(t\text{-Bu})_2\text{NO}\bullet$ in an ESR experiment) with no significant effect of excess I⁻ on the rate of radical formation from t-BuHgI. With the irradiation utilized in Table 1, the photochemical decomposition of t-BuHgCI was typically 3–5%/h (as measured by $(t\text{-Bu})_2\text{NO}\bullet$ product inhibition).

Although in Processes (1) and (2) it has not been possible to distinguish between Reactions (3) and (4) as the dominant step in the iodide promoted reactions, a decision in favor of Reaction (4) can be made in the free radical reaction between i-PrHgI and BrCCl₃, a process which also displays dramatic acceleration by iodide ion. Photolysis of BrCCl₃ and i-PrHgI in Me₂SO forms i-PrBr and only traces of HCCl₃, but with a rate only ~ 0.5 the rate of formation

bWorkup by NaBH₄ or H₃O⁺.

^cWorkup with 1% hydrochloric acid or Na₂S₂O₃.

^dMe₂SO (60%)-MeÓH (40%).

eMajor product was t-BuCH2CH(CO2Et)CH2CH2CO2Et.

^ft-BuCH₂CH₂CO₂Me, no telomer observed.

⁸MA = maleic anhydride.

ht-BuCH=CPh2 is also formed by an unknown mechanism.

With i-PrHgCl, E/Z = 97/3.

of radicals as measured by $(t-Bu)_2NO$ • product inhibition. In the presence of 1–2 equiv. of NaI a much faster reaction yielding i-PrBr occurs by a process completely inhibited by $(t-Bu)_2NO$ • for a discrete period of time. The reaction is conveniently followed by 300 MHz ¹H-NMR in d_6 -Me₂SO. There is a significant upfield shift of the ¹H-NMR isopropyl heptet of i-PrHgI upon complexation with I⁻ from which the complexation constant of $9 \pm 1 \,\mathrm{m}^{-1}$ in d_6 -Me₂SO at 25 °C can be obtained (the alkyl groups are rapidly time-averaged between RHgI and RHgI₂). Addition of 2 equiv. of BrCCl₃ to an equilibrated solution containing i-PrHgI₂ in the dark and in the absence of (t-Bu)₂NO• results in a rapid initial reaction for which an initial chain length $>2 \times 10^4$ is calculated ($10 \,\mathrm{mol}\%$ of (t-Bu)₂NO• inhibits the reaction for 7 days). The yield of i-PrBr in the initial rapid reaction is approximately equal to the starting concentration of i-PrHgI₂. Moreover, the initial rapid reaction is accompanied by a shift of the isopropyl ¹H-NMR heptet to a value near uncomplexed i-PrHgI, i.e. i-PrHgI₂ is preferentially consumed at a rate faster than it is regenerated. After the initial fast consumption of i-PrHgI₂, the reaction proceeds to completion but at a slower rate. In the presence of NH₄I the reaction yields CHCl₃ and i-PrBr in a 1:1 ratio consistent with Reactions (5) and (6).

$$CCl_3 \cdot + i - PrHgI_2^- \longrightarrow CCl_3^- + HgI_2 + i - Pr \cdot$$
 (5)

$$i-Pr \cdot + BrCCl_3 \longrightarrow i-PrBr + CCl_3 \cdot \tag{6}$$

We have examined competitive conjugate addition reactions to determine if other ate complexes, such as $(t-Bu)_2CuLi$ or $(t-Bu)_3ZnLi$, can also react by a mechanism involving tert-butyl radicals. Stereochemical evidence demonstrates that 2°-alkyl or 1-alkenyl cuprates do not generate the alkyl or alkenyl radicals in conjugate addition or substitution reactions^{4,5} even though electron transfer between the cuprate and $\alpha-\beta$ -unsaturated ketones or alkyl iodides seems to be involved.^{6,7} However, formation of alkyl radicals from ate complexes may be a more favorable process when the radicals are tertiary.

Competition of 2-cyclopentenone (C_5) and 2-cyclohexenone (C_6) for alkyl radicals in the RHgCl/Nal/Me₂SO/hv system at 40 °C (reactions leading to the 3-alkylcycloalkanones, see Table 1) yields a C_5/C_6 reactivity ratio of 3·8 for t-Bu• and 2·4 for n-Bu•. With (n-Bu)₂CuLi or (n-Bu)₃ZnLi/TMEDA⁸ in Et₂O at 0°, 2-cyclohexenone is more reactive than 2-cyclopentenone, $C_5/C_6 = 1/5$ and $1/2 \cdot 5$, respectively. However, with (t-Bu)₂CuLi, LiI (-78 or -30 °C), or (t-Bu)₃ZnLi/TMEDA (0 °C), C_5 is more reactive than C_6 by factors of 5·0, 4·2, and 3·9, respectively. We interpret the selectivity in these reactions of tert-butyl ate complexes in terms of predominant radical attack upon the α , β -unsaturated ketones to yield an enolyl radical which regnerates t-Bu• by Reaction (7).

enolyl• + ate complex
$$\longrightarrow$$
 t-Bu• + enolate ate complex (7)

Further evidence favoring radical attack with $(t-Bu)_2$ CuLi is furnished by the use of $Ph_2C=CH_2$ is a radical trap. With $(n-Bu)_2$ CuLi, 10 equiv. of $Ph_2C=CH_2$ had no effect on the nearly quantitative yield of alkylation product from 2-cyclohexenone at $-78\,^{\circ}$ C. However with $(t-Bu)_2$ CuLi (1 equiv.) at $-78\,^{\circ}$ C, the presence of 5 equiv. of $Ph_2C=CH_2$ decreased the yield of 3-t-butylcyclohexanone from 0.90 to 0.42 equiv. with the formation of 0.32 equiv. of $t-BuCH_2CPh_2$ • disproportionation products $(t-BuCH_2CHPh_2$ and $t-BuCH=CPh_2$). Essentially the same result was observed in Me_2SO at $40\,^{\circ}$ C for the photostimulated t-BuHgCl/NaI system.

Stability of cuprates in homolysis may be important in determining whether a radical chain process is initiated or if electron transfer cage processes⁶ dominate. Thus, it is recognized that $(t\text{-Bu})_2\text{Cu}(\text{CN})\text{Li}_2^9$ and $(t\text{-Bu})_2\text{Cu}(\text{PBu}_3)\text{Li}^{10}$ are thermally more stable than $(t\text{-Bu})_2\text{CuLi}$. These reagents yield a $C_5:C_6$ ratio of 1:4 at $-78\,^{\circ}\text{C}$ in a reaction unaffected by the presence of

Ph₂C=CH₂ and which we interpret as 'ionic' addition. Attempts to stimulate a radical alkylation by photolysis of these reagents has been unsuccessful.

Competitive substitution reactions of allyl (A) and propargyl (P) chlorides with $(t\text{-Bu})_2\text{CuLi}$ also gave evidence for t-Bu attack. With t-BuHgCl/hv (Table 1), k_A/k_P was 12 ± 1 in Me₂SO (with NaI) or Et₂O. With $(t\text{-Bu})_2\text{CuLi}$ in Et₂O at -78 or 0°C , k_A/k_P had a similar value (10-13), but with $(t\text{-Bu})_2\text{Cu}(\text{CN})\text{Li}_2$ the propargyl chloride reacted preferentially, $k_A/k_P = 0.7 \pm 0.1$. Again, a change in mechanism between $(t\text{-Bu})_2\text{CuLi}$ and $(t\text{-Bu})_2\text{Cu}(\text{CN})\text{Li}_2$ is indicated.

In another test for t-Bu• attack, the regio and chemoselectivity for the reactions of PhCH=CHSO₂Ph and PhC=CSO₂Ph were examined. For PhCH=CHSO₂Ph attack of t-Bu• occurs 2·7 times as readily at the β -position as at the position α to the benzene ring at 40 °C (Me₂SO, Table 1). The observed regiochemistry with t-BuLi in THF was 2·8:1 at 0 °C. With PhC=CSO₂Ph or PhC=CSPh, only β -substitution was observed with either t-BuLi or t-BuHgCl/hv. The relative reactivities in β -substitution for the series PhC=CSPh, PhC=CSO₂Ph and PhCH=CHSO₂Ph at 40 °C were 0·3:1·6:1·0 and 0·3:1·8:1·0 for t-BuHgCl/Me₂SO/hv and t-BuLi/THF, respectively. Reactions of t-BuLi with these substrates may involve a radical process in which the eliminated radical (PhS•, PhSO₂•) or the adduct radical (PhCH(t-Bu)CHSO₂Ph) attacks t-BuLi to generate t-Bu•. At -78 °C, t-BuLi and (t-Bu)₂CuLi gave similar relative reactivities for β -substitutions in PhC=CSO₂Ph and PhCH=CHSO₂Ph (t-Rel = 1·7-2·0:1). Interestingly, (t-Bu)₂Cu(CN)Li₂ at -78 °C failed to react with PhCH=CHSO₂Ph but yielded the α -addition product in 98% yield with PhC=CSO₂Ph.

Nucleophilic substitutions or conjugate additions proceed by a variety of mechanisms. Radical chain mechanisms can become dominant in both processes as has been observed to be the case with alkylmercury halides where the polarity of the carbon—mercury bond is not conducive to either nucleophilic attack at carbon, ¹¹ or to the transfer of a carbon nucleophile from mercury to an α - β -unsaturated system. Radical chain processes become particularly attractive when facile electron transfer can occur between an organometallic reagent and a radical or radical ion derived from the substrate, e.g. the formation of R• from RHgCl upon reduction by RNu• or other donor species ^{11,12} and from RHgI₂ upon oxidation by acceptor species such as CCl₃• or RCH₂CH=C(O•)R'.

ACKNOWLEDGEMENT

Work supported by grants from the National Science Foundation (CHE-8717871) and the Petroleum Research Fund (18911-AC4-C).

REFERENCES

- 1. G. A. Russell, W. Jiang, S. S. Hu and R. K. Khanna, J. Org. Chem., 51, 5498 (1986).
- 2. G. A. Russell, H. Tashtoush and P. Ngoviwatchai, J. Am. Chem. Soc., 106, 4622 (1984).
- 3. G. A. Russell and H. Tashtoush, J. Am. Chem. Soc., 105, 1398 (1983).
- 4. G. M. Whitesides and P. E. Kendall, J. Org. Chem., 37, 3718 (1972).
- C. P. Casey and R. A. Boggs, Tetrahedron Lett., 2455 (1971); F. N\u00e4f and P. Degen, Helv. Chim. Acta, 54, 1939 (1971).
- H. O. House, Acc. Chem. Res., 9, 59 (1976); R. A. J. Smith and D. J. Hannah, Tetrahedron, 35, 1183 (1979).

- 7. E. C. Ashby and D. Coleman, J. Org. Chem., 52, 4554 (1987); B. H. Lipshutz and R. S. Wilhelm, J. Am. Chem. Soc., 104, 4871 (1982).
- 8. R. A. Walson and R. A. Kjonaas, Tetrahedron Lett., 27, 1437 (1986).
- 9. B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski and J. A. Parker, J. Org. Chem., 49, 3928 (1984).
- G. M. Whitesides, W. F. Fischer, J. San Filippo, R. W. Bashe and H. O. House, J. Am. Chem. Soc., 91, 4871 (1969).
- 11. G. A. Russell, J. Hershberger and K. Owens, J. Am. Chem. Soc., 101, 1312 (1979).
- 12. G. A. Russell, D. Guo and R. K. Khanna, J. Org. Chem., 50, 3423 (1985).